Discipline:	Semester :	Name of the Teaching faculty:
Mechanical	3 rd Semester 2020- 21	C R Meher (Lect.)
Engineering	21	
Subject :	No. of Days/Week	Semester from date: / /2020 to date: / /2020
Mechanical Engg Lab	Class Allotted: 60	No of weeks :18
Lab		
Week	Class Day	Practical Topics
1 st	1 st	Introduction of MEL lab
	2 nd	Introduction of MEL lab
2 nd	1 st	Determine end reactions in a simply supported beam using
	2 nd	parallel force apparatus. Determine end reactions in a simply supported beam using
		parallel force apparatus.
3 rd	1 st	Perform experiment
	2 nd	Perform experiment
4 th	1 st	Determination of Young's modulus using Searle's apparatus
	2 nd	Determination of Young's modulus using Searle's apparatus
5 th	1 st	Perform experiment
	2 nd	Perform experiment
6 th	1 st	Determination of torsional rigidity of the shaft using torsion
	2 nd	testing machine Determination of torsional rigidity of the shaft using torsion
		testing machine
7 th	1 st	Perform experiment
	2 nd	Perform experiment
8 th	1 st	Determination of salient points (Young's modulus, yield point,
		fracture point) from stress- strain curve using Universal Testing
	2 nd	Machine Determination of salient points (Young's modulus, yield point,
		fracture point) from stress- strain curve using Universal Testing
		Machine
9 th	1 st	Perform experiment
	2 nd	Perform experiment
10 th	1 st	Determination of hardness number by Rockwell/Vickers
	and	hardness testing machine
	2 nd	Determination of hardness number by Rockwell/Vickers hardness testing machine
11 th	1 st	Perform experiment
	2 nd	Perform experiment
		renorm experiment

12 th	1 st	Determination of toughness using Impact testing machine
		(Charpy/Izod)
	2 nd	Determination of toughness using Impact testing machine
		(Charpy/Izod)
13 th	1 st	Perform experiment
	2 nd	Perform experiment
	1 st	Determination of Flash point and fire point
14 th		
	2 nd	Determination of Flash point and fire point
15 th	1 st	Perform experiment
	2 nd	Perform experiment
16 th	1 st	Joule's experiment
	2 nd	Joule's experiment
17 th	1 st	Perform experiment
	2 nd	Perform experiment
18 th	1 st	Revision exp 1,2,3,4
	2 nd	Revision exp 5,6,7,8